首页> 外文OA文献 >Real-Time GPU-Based 3D Ultrasound Reconstruction and Visualization
【2h】

Real-Time GPU-Based 3D Ultrasound Reconstruction and Visualization

机译:基于GPU的实时3D超声重建和可视化

摘要

Ultrasound scanning is frequently used in medical practice because it is a non-invasive, safe and low-cost solution (vs. CT or MR). However, conventional ultrasound probes only provide 2D scans. 3D ultrasound reconstruction builds 2D scans into 3D volumes of the patient's internals. Since these volumes can be used for acquiring out-of-angle views, 3D rendering of the anatomy, and for image guided surgery, they are rapidly expanding the possible uses of ultrasound. However, the 3D reconstruction process is computationally demanding and includes processing millions of picture and volume elements. This process can currently take minutes or even hours on conventional systems. It is very desirable to reconstruct ultrasound images in real-time to guide surgeons doing surgery. In this thesis, we manage to achieve this by utilizing the parallel processing power of GPUs with hundreds of computing cores. Our novel optimized methods take advantage of this power in order to perform entire volume reconstructions in only fractions of a second. Several optimization techniques have been developed, including only processing the relevant parts of the input. Novel methods for real-time incremental reconstruction producing high-quality results based on advanced interpolation techniques, are also presented. Using our novel pixel-based and voxel-based methods, we are able to generate a volume of 67 million voxels in on 0.9 and 0.6 seconds, respectively. These results are based on the new NVIDIA Fermi GPUs, OpenCL and 434 tracked ultrasound scans. For high-quality incremental reconstruction, real-time processing times are obtained for methods based on distance weighted orthogonal projections and on the probe trajectory (PT). Our GPU implementations give a performance speedup of 14 for pixel-based methods, an impressive 51 for voxel-based methods, and speedup of 6-8 for the incremental methods, compared with single-threaded CPU implementations. The cubic interpolation of the PT method is shown to be superior to the others and preserves the most details. As for possible future work, we point out techniques for handling memory constraints, complex probe movement and the device-to-host transfer bottleneck.
机译:超声扫描在医学实践中经常被使用,因为它是一种非侵入性,安全且低成本的解决方案(相对于CT或MR)。但是,常规超声探头仅提供2D扫描。 3D超声重建可将2D扫描构建为患者内部3D体积。由于这些体积可用于获取斜角视图,解剖结构的3D渲染以及图像引导手术,因此它们正在迅速扩展超声的可能用途。但是,3D重建过程在计算上要求很高,并且包括处理数百万个图片和体积元素。当前,在传统系统上,此过程可能需要几分钟甚至几小时。实时重建超声图像以指导外科医生进行手术是非常理想的。在本文中,我们设法利用具有数百个计算核心的GPU的并行处理能力来实现这一目标。我们新颖的优化方法充分利用了这种能力,可以在不到一秒的时间内完成整个体积的重建。已经开发了几种优化技术,包括仅处理输入的相关部分。还提出了基于先进插值技术的实时增量重建产生高质量结果的新方法。使用我们新颖的基于像素和基于体素的方法,我们能够分别在0.9和0.6秒内生成6700万个体素。这些结果基于新的NVIDIA Fermi GPU,OpenCL和434跟踪的超声波扫描。对于高质量的增量重建,基于距离加权正交投影和探针轨迹(PT)的方法可获得实时处理时间。与单线程CPU实施相比,我们的GPU实施使基于像素的方法的性能提高了14倍,对于基于体素的方法的性能提高了51倍,对于增量方法的性能提高了6-8倍。 PT方法的三次插值被证明优于其他方法,并且保留了最多的细节。对于将来可能的工作,我们指出了用于处理内存限制,复杂的探针移动以及设备到主机传输瓶颈的技术。

著录项

  • 作者

    Ludvigsen Holger;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号