首页> 外文OA文献 >Multivariate stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes : a quasi-likelihood approach
【2h】

Multivariate stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes : a quasi-likelihood approach

机译:基于非高斯Ornstein-Uhlenbeck过程的多元随机波动率模型:一种拟似然法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper extends the ordinary quasi-likelihood estimator for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck (OU) processes to vector processes. Despite the fact that multivariate modeling of asset returns is essential for portfolio optimization and risk management -- major areas of financial analysis -- the literature on multivariate modeling of asset prices in continuous time is sparse, both with regard to theoretical and applied results. This paper uses non-Gaussian OU-processes as building blocks for multivariate models for high frequency financial data. The OU framework allows exact discrete time transition equations that can be represented on a linear state space form. We show that a computationally feasible quasi-likelihood function can be constructed by means of the Kalman filter also in the case of high-dimensional vector processes. The framework is applied to Euro/NOK and US Dollar/NOK exchange rate data for the period 2.1.1989-4.2.2010.
机译:本文将基于非高斯Ornstein-Uhlenbeck(OU)过程的随机波动率模型的普通拟似然估计扩展到矢量过程。尽管资产收益的多变量建模对于投资组合优化和风险管理(财务分析的主要领域)至关重要,但有关理论和应用结果的连续时间资产价格多变量建模的文献很少。本文使用非高斯OU过程作为高频金融数据多元模型的构建基块。 OU框架允许精确的离散时间过渡方程,这些方程可以线性状态空间形式表示。我们表明,在高维矢量过程的情况下,也可以借助卡尔曼滤波器构造一个计算上可行的拟似然函数。该框架适用于2.1.1989-4.2.2010期间的欧元/挪威克朗和美元/挪威克朗的汇率数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号