首页> 外文OA文献 >Classic and quantum capacitances in Bernal bilayer and trilayer graphene field effect transistor
【2h】

Classic and quantum capacitances in Bernal bilayer and trilayer graphene field effect transistor

机译:Bernal双层和三层石墨烯场效应晶体管中的经典电容和量子电容

摘要

Our focus in this study is on characterizing the capacitance voltage (C-V) behavior of Bernal stacking bilayer graphene (BG) and trilayer graphene (TG) as the channel of FET devices. The analytical models of quantum capacitance (QC) of BG and TG are presented. Although QC is smaller than the classic capacitance in conventional devices, its contribution to the total metal oxide semiconductor capacitor in graphene-based FET devices becomes significant in the nanoscale. Our calculation shows that QC increases with gate voltage in both BG and TG and decreases with temperature with some fluctuations. However, in bilayer graphene the fluctuation is higher due to its tunable band structure with external electric fields. In similar temperature and size, QC in metal oxide BG is higher than metal oxide TG configuration. Moreover, in both BG and TG, total capacitance is more affected by classic capacitance as the distance between gate electrode and channel increases. However, QC is more dominant when the channel becomes thinner into the nanoscale, and therefore we mostly deal with quantum capacitance in top gate in contrast with bottom gate that the classic capacitance is dominant.
机译:我们在这项研究中的重点是表征Bernal堆叠双层石墨烯(BG)和三层石墨烯(TG)作为FET器件的通道的电容电压(C-V)行为。提出了BG和TG的量子电容(QC)的解析模型。尽管QC小于常规设备中的经典电容,但它对基于石墨烯的FET设备中的总金属氧化物半导体电容器的贡献在纳米级上变得非常重要。我们的计算表明,在BG和TG中,QC随着栅极电压的增加而增加,并且随着温度的升高而有所降低。但是,在双层石墨烯中,由于其具有外部电场的可调带结构,因此波动较大。在相似的温度和尺寸下,金属氧化物BG中的QC高于金属氧化物TG构型。而且,在BG和TG中,随着栅电极和沟道之间距离的增加,总电容受经典电容的影响更大。但是,当通道变得更薄至纳米级时,QC更为占主导地位,因此与传统电容占主导的底栅相比,我们主要处理顶栅中的量子电容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号