首页> 外文OA文献 >Planar contour tracking in the presence of pose and model errors by Kalman filtering techniques
【2h】

Planar contour tracking in the presence of pose and model errors by Kalman filtering techniques

机译:通过卡尔曼滤波技术在存在姿态和模型误差的情况下进行平面轮廓跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents a solution to the problem of planar contour tracking with a force-controlled robot. The contour shape is unknown and is characterized at each time step by the curvature together with the orientation angle and arc length. The unknown contour curvature, continuously changing, is supposed to be within a preliminary given interval. An Interacting Multiple Model (IMM) filter is implemented to cope with the uncertainties. The interval of possible curvature values is discretized, i.e., a grid is formed and several Extended Kalman filters (EKFs) are run in parallel. The curvature estimate represents a fusion of the values from the grid with the IMM probabilities. The orientation angle estimate is also a fusion of the estimates, obtained from the separate Kalman filters with the mode probabilities. A single-model EKF is implemented to localize the unknown initial robot end-effector position over the contour. The performance of both algorithms is investigated and results, based on real data, are presented.
机译:本文提出了一种用力控制机器人进行平面轮廓跟踪的解决方案。轮廓形状是未知的,并且在每个时间步均由曲率以及方向角和弧长来表征。连续变化的未知轮廓曲率应该在预先给定的间隔内。实施了交互多模型(IMM)过滤器以应对不确定性。离散可能的曲率值的间隔,即,形成网格,并并行运行几个扩展卡尔曼滤波器(EKF)。曲率估计值表示来自网格的值与IMM概率的融合。定向角估计值也是从单独的卡尔曼滤波器获得的估计值与模式概率的融合。实现了单模型EKF,以将未知的初始机器人末端执行器位置定位在轮廓上。研究了两种算法的性能,并基于实际数据给出了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号