首页> 外文OA文献 >A comparative review of dimension reduction methods in approximate Bayesian computation
【2h】

A comparative review of dimension reduction methods in approximate Bayesian computation

机译:贝叶斯近似计算中降维方法的比较综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full datasets, a central question is how to derive low dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three non-mutually exclusive classes consisting of best subset selection methods, projection techniques and regularisation. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularisation procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.
机译:近似贝叶斯计算(ABC)方法利用模拟和观察到的摘要统计量之间的比较来克服计算难易的似然函数的问题。由于ABC的实际实现需要基于摘要统计量的向量而不是完整的数据集进行计算,因此一个中心问题是如何从观测数据中获得低维摘要统计量,而信息损失最少。在本文中,我们对ABC文献中提出的降维主要方法的性能进行了全面的回顾和比较。这些方法分为三个非互斥类,分别由最佳子集选择方法,投影技术和正则化组成。此外,我们介绍了两种新的降维方法。第一种是基于Akaike和贝叶斯信息准则的最佳子集选择方法,第二种是使用岭回归作为正则化过程。我们通过分析三个具有挑战性的模型和数据集来说明这些降维技术的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号