首页> 外文OA文献 >Mining user development signals for online community churner detection
【2h】

Mining user development signals for online community churner detection

机译:挖掘用户开发信号以进行在线社区巡视

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Churners are users who stop using a given service after previously signing up. In the domain of telecommunications and video games, churners represent a loss of revenue as a user leaving indicates that they will no longer pay for the service. In the context of online community platforms (e.g., community message boards, social networking sites, question--answering systems, etc.), the churning of a user can represent different kinds of loss: of social capital, of expertise, or of a vibrant individual who is a mediator for interaction and communication. Detecting which users are likely to churn from online communities, therefore, enables community managers to offer incentives to entice those users back; as retention is less expensive than re-signing users up. In this article, we tackle the task of detecting churners on four online community platforms by mining user development signals. These signals explain how users have evolved along different dimensions (i.e., social and lexical) relative to their prior behaviour and the community in which they have interacted. We present a linear model, based upon elastic-net regularisation, that uses extracted features from the signals to detect churners. Our evaluation of this model against several state of the art baselines, including our own prior work, empirically demonstrates the superior performance that this approach achieves for several experimental settings. This article presents a novel approach to churn prediction that takes a different route from existing approaches that are based on measuring static social network properties of users (e.g., centrality, in-degree, etc.).
机译:流失者是指在先前注册后停止使用给定服务的用户。在电信和视频游戏领域,用户流失表明用户将不再为该服务付费,流失者代表了收入损失。在在线社区平台(例如社区留言板,社交网站,问题解答系统等)的背景下,用户的流失可能代表不同类型的损失:社会资本,专业知识或充满活力的人,是互动和沟通的中介。因此,检测到哪些用户可能会从在线社区中流失,可以使社区管理员提供激励措施,以诱使这些用户返回。因为保留费用比重新注册用户要便宜。在本文中,我们通过挖掘用户开发信号来解决在四个在线社区平台上检测流失的任务。这些信号说明了用户相对于其先前的行为以及与之互动的社区如何沿不同维度(即社交和词汇)发展。我们基于弹性网正则化提出一种线性模型,该模型使用从信号中提取的特征来检测搅动。我们根据几个最先进的基准(包括我们自己的先前工作)对该模型进行的评估,从经验上证明了该方法在多个实验设置下均具有的出色性能。本文介绍了一种流失预测的新颖方法,该方法与基于基于测量用户的静态社交网络属性(例如,中心度,度数等)的现有方法采用的途径不同。

著录项

  • 作者

    Rowe Matthew;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号