首页> 外文OA文献 >Removing Systematic Error in Node Localization Using Scalable Data Fusion
【2h】

Removing Systematic Error in Node Localization Using Scalable Data Fusion

机译:使用可伸缩数据融合消除节点本地化中的系统错误

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methods for node localisation in sensor networks usually rely upon the measurement of received strength, time-of-arrival, and/or angle-of-arrival of an incoming signal. In this paper, we propose a method for achieving higher accuracy by combining redundant measurements taken by different nodes. This method is aimed at compensating for the systematic errors which are dependent on the specific nodes used, as well as their spatial configuration. Utilising a technique for data fusion on the physical layer, the time complexity of the method is constant and independent of the number of participating nodes. Thus, adding more nodes generally increases accuracy but does not require additional time to report measurement results. Our data analysis and simulation models are based on extensive experiments with real ultrasound positioning hardware. The simulations show that the ninety-fifth percentile positioning error can be improved by a factor of three for a network of fifty nodes.
机译:传感器网络中节点定位的方法通常依赖于输入信号的接收强度,到达时间和/或到达角度的测量。在本文中,我们提出了一种通过组合不同节点获得的冗余测量来实现更高精度的方法。该方法旨在补偿取决于所使用的特定节点及其空间配置的系统误差。利用物理层上的数据融合技术,该方法的时间复杂度是恒定的,并且与参与节点的数量无关。因此,添加更多的节点通常可以提高准确性,但不需要额外的时间来报告测量结果。我们的数据分析和仿真模型基于真实超声定位硬件的广泛实验。仿真表明,对于五十个节点的网络,百分之九十五的定位误差可以提高三倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号