首页> 外文OA文献 >Losing control:the case for emergent software systems using autonomous assembly, perception and learning
【2h】

Losing control:the case for emergent software systems using autonomous assembly, perception and learning

机译:失去控制:使用自主组装,感知和学习的新兴软件系统的案例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Architectural self-organisation, in which different configurations of software modules are dynamically assembled based on the current context, has been shown to be an effective way for software to self-optimise over time. Current approaches to this rely heavily on human-led definitions: models, policies and processes to control how self-organisation works. We present the case for a paradigm shift to fully emergent computer software which places the burden of understanding entirely into the hands of software itself. These systems are autonomously assembled at runtime from discovered constituent parts and their internal health and external deployment environment continually monitored. An online, unsupervised learning system then uses runtime adaptation to explore alternative system assemblies and locate optimal solutions. Based on our experience to date, we define the problem space of emergent software, and we present a working case study of an emergent web server. Our results demonstrate two aspects of the problem space for this case study: that different assemblies of behaviour are optimal in different deployment environment conditions; and that these assemblies can be autonomously learned from generalised perception data while the system is online.
机译:架构自组织已被证明是一种有效的软件随时间进行自我优化的方法,在该方法中,根据当前上下文动态组装软件模块的不同配置。当前的解决方法在很大程度上取决于以人为主导的定义:控制自我组织运作方式的模型,策略和过程。我们提出了向完全新兴的计算机软件转变的范例,这种理解将理解的负担完全交给了软件本身。这些系统在运行时从发现的组成部分自动组装,并持续监控其内部运行状况和外部部署环境。然后,在线无人监督学习系统使用运行时适应来探索替代系统组件并找到最佳解决方案。根据迄今为止的经验,我们定义了紧急软件的问题空间,并提出了紧急Web服务器的工作案例研究。我们的结果证明了此案例研究的问题空间的两个方面:在不同的部署环境条件下,不同的行为组合是最优的;并且这些组件可以在系统在线时从通用感知数据中自主学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号