首页> 外文OA文献 >The value of competitive information in forecasting FMCG retail product sales and the variable selection problem:Working paper 2013:1
【2h】

The value of competitive information in forecasting FMCG retail product sales and the variable selection problem:Working paper 2013:1

机译:竞争信息在快速消费品零售产品预测中的价值和变量选择问题:工作论文2013:1

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sales forecasting at the UPC level is important for retailers to manage inventory. In this paper, we propose more effective methods to forecast retail UPC sales by incorporating competitive information including prices and promotions. The impact of these competitive marketing activities on the sales of the focal product has been extensively documented. However, competitive information has been surprisingly overlooked by previous studies in forecasting UPC sales, probably because of the high-dimensionality problem associated with the selection of variables. That is, each FMCG product category typically contains a large number of UPCs and is consequently associated with a large number of competitive explanatory variables. Under such a circumstance, time series models can easily become over-fitted and thus generate poor forecasting results. Our forecasting methods consist of two stages. At the first stage, we refine the competitive information. We identify the most relevant explanatory variables using variable selection methods, or alternatively, pool information across all variables using factor analysis to construct a small number of diffusion indexes. At the second stage, we specify the Autoregressive Distributed Lag (ADL) model following a general to specific modelling strategy with the identified most relevant competitive explanatory variables and the constructed diffusion indexes. We compare the forecasting performance of our proposed methods with the industrial practice method (benchmark model) and the ADL model specified exclusively with the price and promotion information of the focal product. The results show that our proposed methods generate substantially more accurate forecasts across a range of product categories.
机译:UPC级别的销售预测对于零售商管理库存很重要。在本文中,我们提出了通过结合包括价格和促销在内的竞争信息来预测UPC零售的更有效方法。这些竞争性营销活动对焦点产品销售的影响已得到广泛记录。但是,以前的研究在预测UPC销售方面却意外地忽略了竞争性信息,这可能是由于与变量选择相关的高维度问题。也就是说,每个快速消费品产品类别通常包含大量UPC,因此与大量竞争性解释变量相关联。在这种情况下,时间序列模型很容易变得过拟合,从而产生较差的预测结果。我们的预测方法包括两个阶段。在第一阶段,我们完善竞争信息。我们使用变量选择方法来确定最相关的解释变量,或者使用因子分析在所有变量中合并信息,以构建少量的扩散指标。在第二阶段,我们遵循一般到特定的建模策略,使用已识别的最相关的竞争解释变量和构建的扩散指标,指定自回归分布式滞后(ADL)模型。我们将我们提出的方法的预测性能与行业实践方法(基准模型)以及专门针对焦点产品的价格和促销信息指定的ADL模型进行了比较。结果表明,我们提出的方法可对一系列产品类别产生更为准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号