首页> 外文OA文献 >Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings
【2h】

Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings

机译:机械和湿热载荷下层合复合材料随机搜索优化算法比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of the present study is to design the stacking sequence of the laminated composites that have low coefficient of thermal expansion and high elastic moduli. In design process, multi-objective genetic algorithm optimization of the carbon fiber laminated composite plates is verified by single objective optimization approach using three different stochastic optimization methods: genetic algorithm, generalized pattern search, and simulated annealing. However, both the multi- and single-objective approaches to laminate optimization have been used by considerably few authors. Simplified micromechanics equations, classical lamination theory, and MATLAB Symbolic Math toolbox are used to obtain the fitness functions of the optimization problems. Stress distributions of the optimized composites are presented through the thickness of the laminates subjected to mechanical, thermal, and hygral loadings.
机译:本研究的目的是设计具有低热膨胀系数和高弹性模量的层压复合材料的堆叠顺序。在设计过程中,通过单目标优化方法,采用遗传算法,广义模式搜索和模拟退火三种不同的随机优化方法,对碳纤维叠层复合板的多目标遗传算法进行了验证。但是,很少有作者使用层压板优化的多目标和单目标方法。简化的微力学方程式,经典层合理论和MATLAB Symbolic Math工具箱用于获得优化问题的适应度函数。优化的复合材料的应力分布通过承受机械,热和水力负荷的层压板的厚度来表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号