首页> 外文OA文献 >Adaptive Neural Models of Queuing and Timing in Fluent Action
【2h】

Adaptive Neural Models of Queuing and Timing in Fluent Action

机译:流利行动中排队和时间的自适应神经模型

摘要

Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.
机译:熟练,流畅的动作中的时间结构存在多个嵌套层次。在这里考虑的最大规模上,在前额叶皮层中共同计划的短动作序列似乎被循环竞争过程排队等待执行,该过程与并行模拟表示协同工作,该并行模拟表示隐式指定了序列元素的相对优先级。在中等规模上,单个动作(如要抓紧)取决于许多肌肉平行缩短或伸长的速率的比例缩放。为了确保诸如接球等动作的成功,这种平行速率缩放似乎是基底神经节的一个功能,必须与感知变量(例如接触时间)耦合。在每个动作的精细尺度上,只有在精确定时的肌肉激活先加速然后使肢体减速的情况下,才能实现所需的速率缩放,以确保肌肉长度变化不会使精确动作所需的量过低或过冲。每个动作环境可能需要与相似环境大不相同的定时肌肉激活模式。由于无法预先知道需要不同处理方法的上下文差异,因此需要强大的自适应引擎(小脑)来放大巨大的并行信号流中的差异,并连续搜索,以发现何时需要切换的上下文“前导指标”。产生独特的模拟信号并行模式。这些信号从小脑的某些部位控制肌肉。但是最近的模型显示了小脑外侧这种信号如何控制肌肉。但是,最近的模型显示了小脑外侧作为快速访问的长期序列记忆的存储库如何服务于竞争性排队系统(在额叶皮层中)。因此,小脑的不同部分可以使用相同的自适应引擎系统设计来服务所治疗的三个时间结构的最低和最高水平。如果是这样,则在时间结构水平和大脑主要部分之间不存在一对一的映射。最后,最近的数据对小脑自适应定时的网络延迟模型产生了怀疑。

著录项

  • 作者

    Bullock Daniel;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_us
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号