首页> 外文OA文献 >ART Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data
【2h】

ART Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

机译:用于遥感的ART神经网络:来自Landsat TM和地形数据的植被分类

摘要

A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system capabilities arc tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics arc fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results arc obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. Fuzzy ARTMAP automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction by training the system several times. on different orderings of an Input set. Voting assigns confidence estimates to competing predictions.
机译:基于模糊ARTMAP神经网络,开发了一种从Landsat Thematic Mapper(TM)和地形数据自动映射的新方法。使用频谱和地形特征对克利夫兰国家森林中的植被进行分类,对系统功能进行了具有挑战性的遥感分类问题的测试。在像素级别进行训练后,使用在训练期间未看到的站点在展台级别测试系统功能。将结果与最大似然分类器,反向传播神经网络和K最近邻算法的结果进行比较。 ARTMAP动力学具有快速,稳定和可扩展的特点,克服了反向传播的常见局限性,后者不能提供令人满意的性能。使用基于模糊ARTMAP和最大似然预测的凸组合的混合系统可获得最佳结果。 Fuzzy ARTMAP会自动构造最少数量的识别类别以满足准确性标准。投票策略可通过多次训练系统来改善预测。在输入集的不同顺序上。投票会将置信估计分配给竞争性预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号