首页> 外文OA文献 >Cortical Dynamics of Visual Motion Perception: Short-Range and Long Range Apparent Motion
【2h】

Cortical Dynamics of Visual Motion Perception: Short-Range and Long Range Apparent Motion

机译:视觉运动知觉的皮质动力学:短程和远距离视在运动

摘要

This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.
机译:本文介绍了有关生物运动感知的新神经网络理论的进一步证据,该理论称为运动边界轮廓系统。该理论阐明了为什么视觉皮层的区域V1,V2和MT之间存在用于静态形式和运动形式处理的并行流V1→V2和V1→MT。运动边界轮廓系统由多个平行副本组成,因此每个副本都可以通过不同范围的接收场大小来激活。每个副本又细分为两个层次结构化的子系统:面向运动的对比度过滤器或MOC过滤器,用于预处理运动图像;以及协作竞争反馈回路或CC回路,用于生成滤波信号的紧急边界分段。本文使用MOC滤波器来解释关于短程和长程视在运动感知的各种经典数据和最新数据,而其他模型尚未对此进行解释。这些数据包括分裂运动。反向伽玛运动;三角运动视觉惯性在较短的刺激间隔内响应反向Ternus显示进行小组运动;随着间隔距离增加或闪光持续时间减少,运动速度加快;从元素运动到小组运动的过渡依赖于刺激的持续时间和大小;闪光持续时间,空间间隔,激励间隔和运动阈值之间的各种经典依存关系,称为科特定律;以及运动强度对刺激取向和空间频率的依赖性。这些结果通过其他模型没有解释的视运动数据模型补充了先前的解释;最近提出的整体孔径问题的解决方案,包括运动捕获和感应运动的解释;解释如何发展用于静态形式感知和运动形式感知的并行皮质系统,包括证明这些并行系统是通用皮质设计的变体;解释为什么静态形式和运动形式的几何形状不同,特别是为什么相反的方向相差90°,而相反的方向相差180°,以及为什么需要皮层流V1-> V2-> MT的原因;以及如何将其他运动感知模型的主要属性吸收到运动边界轮廓系统设计的不同部分中的摘要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号