首页> 外文OA文献 >An Integrated Neural Network-Event-Related Potentials Model of Temporal and Probability Context Effects on Event Categorization
【2h】

An Integrated Neural Network-Event-Related Potentials Model of Temporal and Probability Context Effects on Event Categorization

机译:时间和概率情境对事件分类的综合神经网络事件相关电位模型

摘要

We present a neural network that adapts and integrates several preexisting or new modules to categorize events in short term memory (STM), encode temporal order in working memory, evaluate timing and probability context in medium and long term memory. The model shows how processed contextual information modulates event recognition and categorization, focal attention and incentive motivation. The model is based on a compendium of Event Related Potentials (ERPs) and behavioral results either collected by the authors or compiled from the classical ERP literature. Its hallmark is, at the functional level, the interplay of memory registers endowed with widely different dynamical ranges, and at the structural level, the attempt to relate the different modules to known anatomical structures.
机译:我们提出了一种神经网络,该网络可以适应和集成几个预先存在的模块或新模块,以对短期记忆(STM)中的事件进行分类,对工作记忆中的时间顺序进行编码,评估中长期记忆中的时间和概率上下文。该模型显示了处理后的上下文信息如何调节事件识别和分类,焦点关注和激励动机。该模型基于事件相关电位(ERP)和行为结果的汇编,该汇编由作者收集或从经典ERP文献汇编而成。在功能级别,其标志是具有广泛不同的动态范围的内存寄存器之间的相互作用;在结构级别,其标志是尝试将不同的模块与已知的解剖结构相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号