首页> 美国政府科技报告 >Drawbar Power Requirements and Soil Disruption of In-Row Subsoiler Points for Conservation Tillage
【24h】

Drawbar Power Requirements and Soil Disruption of In-Row Subsoiler Points for Conservation Tillage

机译:保护性耕作的行内深耕机牵引杆功率要求和土壤破坏

获取原文

摘要

Soil compaction can reduce crop yields by restricting root development. In-row subsoiling is a common tillage practice for disrupting the compacted soil profile, allowing roots to proliferate downward to obtain adequate soil moisture. The subsoiler system is composed of many important components, but the point assembly is the first element to contact the soil and can largely determine the draft requirement and soil disruption of the subsoiler. Two points were evaluated in a soil bin experiment at the USDA-ARS National Soil Dynamics Laboratory in Auburn, AL. A standard ripper point was compared with a splitter point which is designed to fracture the soil and reduce above-ground soil disruption, especially in dry conditions. The subsoiler system was mounted on a three-dimensional dynamometer where measurements of draft force, vertical force, side force, speed, and depth of operation were determined and tillage power requirements were calculated. Measurements of soil disruption including spoil crosssectional area, trench cross-sectional area and trench specific resistance were determined. Results showed that the splitter point required significantly greater drawbar power (28%) compared to standard ripper point the while disturbing similar amounts of below-ground soil. However, the splitter point did reduce the above-ground soil disruption by more than 10%. The splitter point was helpful in reducing above-ground disruption but the added energy cost could be prohibitive for many producers.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号