首页> 美国政府科技报告 >Radiation Damage and Defect Behavior in Ion-Implanted, Lithium Counterdoped Silicon Solar Cells
【24h】

Radiation Damage and Defect Behavior in Ion-Implanted, Lithium Counterdoped Silicon Solar Cells

机译:离子注入锂锂反掺杂硅太阳电池的辐射损伤与缺陷行为

获取原文

摘要

Boron doped silicon n+p solar cells were counterdoped with lithium by ion implanation and the resultant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacancies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号