首页> 美国政府科技报告 >Reduction of Nonlinear Problems to Schroedinger or Heat Equations: Formation of Kepler Orbits, Singular Solutions for Hydrodynamical Equations
【24h】

Reduction of Nonlinear Problems to Schroedinger or Heat Equations: Formation of Kepler Orbits, Singular Solutions for Hydrodynamical Equations

机译:将非线性问题简化为schroedinger或热方程:开普勒轨道的形成,流体动力学方程的奇异解

获取原文

摘要

A Newtonian diffusion model is applied to the formation of planetary orbits. A Navier-Stokes dissipative equation, whose solutions can be found by reduction to the linear heat equation by a transformation for going from the nonlinear equations for stochastic velocities (equivalent to the stochastic equation for the position process) to the Schroedinger equation for the quantities associated with the distribution of the process, is outlined. The solutions give velocity fields which are singular on the nodal surfaces of the solutions of the heat equation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号