首页> 美国政府科技报告 >The effect of Cr, Co, Al, Mo and Ta on a series of cast Ni-base superalloys on the stability of an aluminide coating during cyclic oxidation in Mach 0.3 burner rig
【24h】

The effect of Cr, Co, Al, Mo and Ta on a series of cast Ni-base superalloys on the stability of an aluminide coating during cyclic oxidation in Mach 0.3 burner rig

机译:Cr,Co,al,mo和Ta对一系列铸造Ni基高温合金对mach 0.3燃烧器钻头循环氧化过程中铝化物涂层稳定性的影响

获取原文

摘要

The influence of varying the content of Co, Cr, Mo, Ta, and Al in a series of cast Ni-based gamma/gamma'superalloys on the behavior of aluminide coatings was studied in burner rig cyclic oxidation tests at 1100 C. The alloys had nominally fixed levels of Ti, W, Cb, Zr, C, and B. The alloy compositions were based on a full 2(sup 5)-fractional statistical design supplemented by 10 star point alloys and a center point alloy. This full central composite design of 43 alloys plus two additional alloys with extreme Al levels allowed a complete second degree estimating equation to be derived from the 5-compositional variables. The weight change/time data for the coated samples fitted well to the paralinear oxidation model and enabled a modified oxidation attack parameter, K'(sub a) to be derived to rank the alloys and log K' (sub a ) to be used as the dependent variable in the estimating equation to determine the oxidation resistance of the coating as a function of the underlying alloy content. The most protective aluminide coatings are associated with the highest possible base ally contents of CR and Al and at a 4 percent Ta level. The Mo and Co effects interact but at fixed levels of 0, 5, or 10 Co. A 4 Mo level is optimum.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号