首页> 美国政府科技报告 >Effect of Data Reduction and Fiber-Bridging on Mode I Delamination Characterization of Unidirectional Composites
【24h】

Effect of Data Reduction and Fiber-Bridging on Mode I Delamination Characterization of Unidirectional Composites

机译:数据简化和光纤桥接对单向复合材料I型分层特性的影响

获取原文

摘要

Reliable delamination characterization data for laminated composites are needed for input in analytical models of structures to predict delamination onset and growth. The double-cantilevered beam (DCB) specimen is used to measure fracture toughness, GIc, and strain energy release rate, GImax, for delamination onset and growth in laminated composites under mode I loading. The current study was conducted as part of an ASTM Round Robin activity to evaluate a proposed testing standard for Mode I fatigue delamination propagation. Static and fatigue tests were conducted on specimens of IM7/977-3 and G40-800/5276-1 graphite/epoxies, and S2/5216 glass/epoxy DCB specimens to evaluate the draft standard "Standard Test Method for Mode I Fatigue Delamination Propagation of Unidirectional Fiber-Reinforced Polymer Matrix Composites." Static results were used to generate a delamination resistance curve, GIR, for each material, which was used to determine the effects of fiber-bridging on the delamination growth data. All three materials were tested in fatigue at a cyclic GImax level equal to 90% of the fracture toughness, GIc, to determine the delamination growth rate. Two different data reduction methods, a 2-point and a 7-point fit, were used and the resulting Paris Law equations were compared. Growth rate results were normalized by the delamination resistance curve for each material and compared to the nonnormalized results. Paris Law exponents were found to decrease by 5.4% to 46.2% due to normalizing the growth data. Additional specimens of the IM7/977-3 material were tested at 3 lower cyclic GImax levels to compare the effect of loading level on delamination growth rates. The IM7/977-3 tests were also used to determine the delamination threshold curve for that material. The results show that tests at a range of loading levels are necessary to describe the complete delamination behavior of this material.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号