首页> 美国政府科技报告 >Nonhydrostatic effects in numerical modeling of mesoscale convective systems and baroclinic waves
【24h】

Nonhydrostatic effects in numerical modeling of mesoscale convective systems and baroclinic waves

机译:中尺度对流系统和斜压波数值模拟中的非静力效应

获取原文

摘要

The present investigation is concerned with the role of convection upon mesoscale modeling results, particularly when the grid resolution becomes small enough that there is not a clear scale separation between the explicitly resolved circulations and the parameterized clouds. In those situations, the vertical accelerations in explicitly resolved circulations become strong enough that the hydrostatic assumption may no longer be valid. These concerns arise from interests in improving mesoscale modeling per se and in improving the subgrid-scale parameterizations in global models. The hydrostatic and the nonhydrostatic options of the Colorado State University Regional Atmospheric Modeling System were used to simulate dry gravity currents in two dimensions, using several different horizontal grid sizes. With horizontal grid intervals of 10 km or less, nonhydrostatic simulations produce wider and colder heads and weaker but wider forced updrafts than do the hydrostatic simulations. Comparing the hydrostatic and nonhydrostatic models show that the difference between the vertical mass fluxes is much less than the difference between the vertical velocities. When the grid is fine enough to resolve the head of the gravity current, horizontal convergence at the gust front extends upwards almost to the head of the cold air. Vertical mass flux in the forced updraft at the front varies with horizontal grid size mainly as a function of the height of the simulated head. For coarser grids, which do not resolve the head, vertical mass flux at all heights decreases with increasing horizontal grid size. A comparison on nonhydrostatic simulations with horizontal grid intervals of 1 km and 2 km illustrates how decreasing the grid size does not necessarily increase the intensity of the resolved circulation. The smaller grid enables the simulated gravity current to entrain a bubble of warm air behind the head, which results in a weaker circulation with a shorter head and weaker updraft.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号