首页> 美国政府科技报告 >The Mars Project: Avoiding Decompression Sickness on a Distant Planet
【24h】

The Mars Project: Avoiding Decompression Sickness on a Distant Planet

机译:火星计划:在遥远的星球上避免减压疾病

获取原文

摘要

A cost-effective approach for Mars exploration is to use available resources, such as water and atmospheric gases. Nitrogen (N2) and argon (Ar) are available and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch (psia). The habitat and space suit are designed as an integrated system: a comfortable living environment about 85 of the time and a safe working environment about 15 of the time. A goal is to provide a system that permits unrestricted exploration of Mars, but the risk of decompression sickness (DCS) during the extravehicular activity in a 3.75-psia suit, after exposure to any of the three habitat conditions, may limit unrestricted exploration. I evaluate here the risk of DCS since a significant proportion of a trinary breathing gas in the habitat might contain Ar. I draw on past experience and published information to extrapolate into untested, multivariable conditions to evaluate risk. A rigorous assessment of risk as a probability of DCS for each habitat condition is not yet possible. Based on many assumptions about Ar in hypobaric decompressions, I conclude that the presence of Ar significantly increases the risk of DCS. The risk is significant even with the best habitat option: 2.56 psia oxygen, 3.41 psia N2, and 2.20 psia Ar. Several hours of prebreathing 100 02, a higher suit pressure, or a combination of other important variables such as limited exposure time on the surface or exercise during prebreathe would be necessary to reduce the risk of DCS to an acceptable level. The acceptable level for DCS risk on Mars has not yet been determined. Mars is a great distance from Earth and therefore from primary medical care. The acceptable risk would necessarily be defined by the capability to treat DCS in the Rover vehicle, in the habitat, or both.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号