首页> 美国政府科技报告 >Detection and Prevention of Cardiac Arrhythmias During Space Flight
【24h】

Detection and Prevention of Cardiac Arrhythmias During Space Flight

机译:太空飞行中心律失常的检测与预防

获取原文

摘要

There have been reports suggesting that long-duration space flight might lead to an increased risk of potentially serious heart rhythm disturbances. If space flight does, in fact, significantly decrease cardiac electrical stability, the effects could be catastrophic, potentially leading to sudden cardiac death. It will be important to determine the mechanisms underlying this phenomenon in order to prepare for long-term manned lunar and interplanetary missions and to develop appropriate countermeasures. Our hypothesis is that prolonged exposure to microgravity will alter T wave alternans measurements, decrease heart rate variance, increase QT dispersion, decrease heart rate recovery and alter QT restitution curve. A recently published study has shown that long duration spaceflights prolong cardiac conduction and repolarization. They concluded that long duration flight is associated with QT interval prolongation and may increase arrhythmia susceptibility. We propose using computer technology as a noninvasive clinical tool to detect and study clinically significant TWA during standard exercise testing using electrode systems specifically adapted for the purpose of obtaining and measuring TWA. A population of approximately 15 healthy men and 5 healthy women subjects, representative of the astronaut cohort will be asked to voluntarily participate in this study. Their blood pressure and ECG/TWA will be measured pre-flight and in-flight. Prior to flight, subjects will be asked to participate in an orientation session. Still photos will be taken of the skin where the conductive gel is used for the multi-segment sensors. Photos will be recorded preflight, immediately postflight, and several times during the proceeding week until it has been determined that any skin reaction has disappeared or that no rash is present and will not appear.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号