首页> 美国政府科技报告 >Preliminary conceptual design for the destruction of organic/ferrocyanide constituents in the Hanford tank waste with low-temperature hydrothermal processing.
【24h】

Preliminary conceptual design for the destruction of organic/ferrocyanide constituents in the Hanford tank waste with low-temperature hydrothermal processing.

机译:用低温水热处理破坏Hanford罐废物中有机/亚铁氰化物成分的初步概念设计。

获取原文

摘要

Hydrothermal processing (HTP) is a thermal-chemical processing method that can be employed to destroy organic and ferrocyanide constituents in Hanford tank waste by using the abundant existing oxidants in the tank waste such as nitrite and nitrate. Use-temperature HTP effectively destroys organics at temperatures from 250(degree)C to 400(degree)C to eliminate safety hazards and improve further processing. This proposal describes a conceptual design of a low-temperature HTP system (including a preliminary flow diagram and plot plan, equipment descriptions and sizes, utility requirements, and costs); the experimental work supporting this effort at Pacific Northwest Laboratory (PNL); the reaction chemistry and kinetics; the technical maturity of the process; and a preliminary assessment of maintenance, operation, and safety of a system. Nitrate destruction using organic reductants is also described. The low-temperature hydrothermal program at PNL was initiated in January 1993. It is part of an overall program to develop organic destruction technologies, which was originally funded by Hanford's Tank Waste Remediation System program and then was transferred to the Initial Pretreatment (IPM) project. As described in the document, low-temperature HTP (1) meets or exceeds system requirements in organic, ferrocyanide, and nitrate destruction, and processing rate; (2) is technically mature with little additional technology development required; (3) is a simple process with good operational reliability; (4) is flexible and can be easily integrated in the system; (5) has reasonable costs and utility requirements; and (6) is safe and environmentally-benign.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号