首页> 美国政府科技报告 >Advanced Curation: Solving Current and Future Sample Return Problems.
【24h】

Advanced Curation: Solving Current and Future Sample Return Problems.

机译:高级策展:解决当前和未来的样本返回问题。

获取原文

摘要

Advanced Curation is a wide-ranging and comprehensive research and development effort at NASA Johnson Space Center that identifies and remediates sample related issues. For current collections, Advanced Curation investigates new cleaning, verification, and analytical techniques to assess their suitability for improving curation processes. Specific needs are also assessed for future sample return missions. For each need, a written plan is drawn up to achieve the requirement. The plan draws while upon current Curation practices, input from Curators, the analytical expertise of the Astromaterials Research and Exploration Science (ARES) team, and suitable standards maintained by ISO, IEST, NIST and other institutions. Additionally, new technologies are adopted on the bases of need and availability. Implementation plans are tested using customized trial programs with statistically robust courses of measurement, and are iterated if necessary until an implementable protocol is established. Upcoming and potential NASA missions such as OSIRIS-REx, the Asteroid Retrieval Mission (ARM), sample return missions in the New Frontiers program, and Mars sample return (MSR) all feature new difficulties and specialized sample handling requirements. The Mars 2020 mission in particular poses a suite of challenges since the mission will cache martian samples for possible return to Earth. In anticipation of future MSR, the following problems are among those under investigation: What is the most efficient means to achieve the less than 1.0 ng/sq cm total organic carbon (TOC) cleanliness required for all sample handling hardware? How do we maintain and verify cleanliness at this level? The Mars 2020 Organic Contamination Panel (OCP) predicts that organic carbon, if present, will be present at the "one to tens" of ppb level in martian near-surface samples. The same samples will likely contain wt% perchlorate salts, or approximately 1,000,000x as much perchlorate oxidizer as organic carbon. The chemical kinetics of this reaction are poorly understood at present under the conditions of cached or curated martian samples. Among other parameters, what is the maximum temperature allowed during storage in order to preserve native martian organic compounds for analysis? What is the best means to collect headspace gases from cached martian (and other) samples? This gas will contain not only martian atmosphere but also off-gassed volatiles from the cached solids.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号