首页> 美国政府科技报告 >Monitoring six-phase ohmic heating of contaminated soils using electrical resistance tomography
【24h】

Monitoring six-phase ohmic heating of contaminated soils using electrical resistance tomography

机译:使用电阻层析成像监测污染土壤的六相欧姆加热

获取原文

摘要

Electrical resistance tomography (ERT) was used to monitor six-phase ohmic heating used for the insitu remediation of volatile organic compounds from subsurface water and soil at the Savannah River Site, near Aiken, South Carolina. The changes in electrical conductivity caused by six-phase ohmic-heating in a clay layer located in the vadose zone were monitored during a period of approximately 2 months, before, during and after heating. From an array of electrodes located in 4 boreholes, we collected electrical resistivity data between five pairs of adjacent holes pairs. This data was used to calculate tomographs which showed the electrical conductivity changes along five vertical planes. The difference tomographs show the combined effects of moisture redistribution and heating caused by six-phase heating and vapor extraction. The tomographs show that most of the clay layer increased in electrical conductivity during the first 3 weeks of the 4 week long heating phase. At this time, the electrical conductivities near the center of the heating array were twice as large as the pre-heat conductivities. Then the electrical conductivity started to decrease for portions of the clay layer closest to the vapor extraction well. We propose that the conductivity decreases are due to the removal of moisture by the heating and vacuum extraction. Parts of the clay layer near the extraction well reached electrical conductivities as low as 40% of the pre-heating values. We propose that these regions of lower than ambient electrical conductivities are indicators of regions where the vapor removal by vacuum extraction was most effective. At the end of the heating phase, our estimates suggest that the clay saturation may have dropped to as low as 10% based on the observed conductivity changes.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号