首页> 美国政府科技报告 >Minimizing phylogenetic number to find good evolutionary trees
【24h】

Minimizing phylogenetic number to find good evolutionary trees

机译:最小化系统发育数量以找到良好的进化树

获取原文

摘要

Inferring phylogenetic trees is a fundamental problem in computational-biology. We present a new objective criterion, the phylogenetic number, for evaluating evolutionary trees for species defined by biomolecular sequences or other qualitative characters. The phylogenetic number of a tree T is the maximum number of times that any given character state arises in T. By contrast, the classical parsimony criterion measures the total number of times that different character states arise in T. We consider the following related problems: finding the tree with minimum phylogenetic number, and computing the phylogenetic number of a given topology in which only the leaves are labeled by species. When the number of states is bounded (as is the case for biomolecular sequence characters), we can solve the second problem in polynomial time. We can also compute a fixed-topology 2-phylogeny (when one exists) for an arbitrary number of states. This algorithm can be used to further distinguish trees that are equal under parsimony. We also consider a number of other related problems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号