首页> 美国政府科技报告 >Measurements of coal particle shape, mass and temperature histories: Impact of particle irregularity on temperature predictions and measurements
【24h】

Measurements of coal particle shape, mass and temperature histories: Impact of particle irregularity on temperature predictions and measurements

机译:煤颗粒形状,质量和温度历史的测量:颗粒不规则性对温度预测和测量的影响

获取原文

摘要

Individual coal and carbon particles were levitated in an electrodynamic balance (EDB) and characterized using high-speed diode array and video based imaging systems to determine particle surface area, volume, drag, mass and density. These same particles were then heated bidirectionally using a long pulsed Nd:YAG laser to simulate combustion level heating fluxes (heating rates on order of 10(sup 4) to 10(sup 5) K/s). Measurements of particle surface temperature, size and laser temporal power variation were made and recorded during each heating experiment. Measured temperature histories were compared with a heat transfer analysis that accounted for variations in particle shape, mass, density, and laser heating power. Results of this study indicate that with well characterized materials of known properties agreement between measurement and model of within 20 K is typical throughout an entire heating and cooling profile. Large particle to particle variations are observed in coal particle temperature histories during rapid heating. These variations can be explained in large part by accounting for particle to particle property (shape, mass and density) variations. Even when accounting for particle to particle shape and density variation, however, model predictions greatly underestimate observed temperature histories. It is concluded that these discrepancies are largely due to uncertainties in the thermal properties (heat capacity and thermal conductivity) typically used to model coal combustion behavior.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号