首页> 美国政府科技报告 >An analytical and computational study of combined rate and size effects on material properties.
【24h】

An analytical and computational study of combined rate and size effects on material properties.

机译:综合速率和尺寸对材料特性影响的分析和计算研究。

获取原文

摘要

The recent interests in developing multiscale model-based simulation procedures have brought about the challenging tasks of bridging different spatial and temporal scales within a unified framework. However, the research focus has been on the scale effect in the spatial domain with the loading rate being assumed to be quasi-static. Although material properties are rate-dependent in nature, little has been done in understanding combined loading rate and specimen size effects on the material properties at different scales. In addition, the length and time scales that can be probed by the molecular level simulations are still fairly limited due to the limitation of computational capability. Based on the experimental and computational capabilities available, therefore, an attempt is made in this report to formulate a hyper-surface in both spatial and temporal domains to predict combined size and rate effects on the mechanical properties of engineering materials. To demonstrate the features of the proposed hyper-surface, tungsten specimens of various sizes under various loading rates are considered with a focus on the uniaxial loading path. The mechanical responses of tungsten specimens under other loading paths are also explored to better understand the size effect. It appears from the preliminary results that the proposed procedure might provide an effective means to bridge different spatial and temporal scales in a unified multiscale modeling framework, and facilitate the application of nanoscale research results to engineering practice.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号