首页> 美国政府科技报告 >Review of the Current Status of Reverse Electrodialysis Systems for Salinity Power Systems Using a Stratified Saturated Solar Pond. Final Report. Report No. 220280
【24h】

Review of the Current Status of Reverse Electrodialysis Systems for Salinity Power Systems Using a Stratified Saturated Solar Pond. Final Report. Report No. 220280

机译:利用分层饱和太阳池评价盐度电力系统反向电渗析系统的现状。总结报告。报告第220280号

获取原文

摘要

The overall objective of this study was to develop and place in operation a small salinity power heat engine of 100-watt capacity consisting of a saturated solar pond (SSP) coupled to a reverse electrodialysis (RED) membrane stack. The objectives of the contract were: (1) to demonstrate that a SSP can be used for unmixing of a mixed brine into a dilute and a concentrated brine stream, (2) to demonstrate that a RED stack can generate electrical power, and (3) to generate the necessary experimental data on the RED-SSP system which can be used to assess the potential of such a system for economical energy generation. The results of findings on the current status of ion-exchange membranes and RED stacks is summarized. It is shown that the electrical resistance of the present-day membranes, which are produced for electrodialysis and not reverse electrodialysis, and the solution compartments are very high. This causes the power density of present-day RED stacks, in terms of watts per unit membrane area, to be very low. This factor combined with the high cost of present-day membranes results in very high costs for the RED stack. Furthermore, present-day membranes as well as adhesives for membrane assemblies cannot operate at about 80 exp 0 C for any reasonable length of time without severe deterioration in performance. The areas that require development work include: (1) development of cheap ion-exchange membranes with low electrical resistance and high permselectivity; (2) development of very thin solution compartments; (3) development of RED stacks which can operate at high temperatures; and (4) laboratory testing of small RED stacks to investigate the effect of temperature on stack performance and the fouling of RED membranes with time, have been identified. (ERA citation 06:012212)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号