首页> 美国政府科技报告 >Modeling the Effect of Surface Active Elements on Weld Pool Fluid Flow, Heat Transfer and Geometry.
【24h】

Modeling the Effect of Surface Active Elements on Weld Pool Fluid Flow, Heat Transfer and Geometry.

机译:表面活性元素对焊池流动,传热和几何的影响模拟。

获取原文

摘要

The influence of sulfur on the heat flow and fluid flow and the transient development of the weld pool was quantitatively evaluated for two heats of Type 304 stainless steel containing 90 and 240 ppM sulfur, respectively. A transient heat transfer model was utilized to simulate the heat flow and fluid flow in the weld pool during stationary laser and gas tungsten arc (GTA) spot welds. A recently developed surface tension model was utilized to calculate the temperature coefficient of surface tension (d gamma /dT) as a function of temperature and sulfur content. This allows a realistic evaluation of the effect of surface-active elements on the fluid flow and weld geometry. The computed results indicate that during stationary welding, the weld pool surface temperatures are fairly high. As a consequence, the temperature coefficient of surface tension becomes negative and a radially outward or a bifurcated flow of weld metal occurs even when the weld pool contains a significant amount of sulfur. The predictions of the model were verified by comparing the calculated and experimentally observed fusion zone geometry. The results indicate very good agreement between the predicted and experimentally observed fusion zone geometry, for both laser and gas tungsten arc (GTA) spot welds, due partly to the accurate treatment of surface tension gradient driven flows. 21 refs., 7 figs., 2 tabs. (ERA citation 14:028733)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号