首页> 美国政府科技报告 >Phenomenological and mathematical modeling of a high pressure steam driven jet injector. Part 2
【24h】

Phenomenological and mathematical modeling of a high pressure steam driven jet injector. Part 2

机译:高压蒸汽喷射器的现象学和数学模型。第2部分

获取原文

摘要

An injector is a particular type of jet pump which uses condensable vapor to entrain a liquid and discharge against a pressure higher than either motive or suction pressures. The injector has no moving parts and requires no external power supply nor any complex control system. Thus, the injector is particularly suited for emergency core cooling operations. A detailed survey has indicated that various injector designs are available for operating pressures below 250 psig. However, the design of these injectors from the viewpoint of a basic understanding of heat and mass transfer processes has not been well developed. A critical review of the models showed serious discrepancies between the analytical models and the experimental observations. The discrepancies evolved from the neglect of non-equilibrium aspects of the flow. The origin of the non-equilibrium aspects can be traced to the extremely small time scales governing the flow in the injector. Thus, time scales of the order of 10(sup (minus)2) seconds are involved in the injector, accompanied by mass, momentum, and heat transfer rates of orders of magnitude higher than that observed in conventional two-phase flows. The present study focuses on the phenomenological and mathematical modeling of the processes in the injector from the viewpoint of its non-equilibrium nature.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号