首页> 美国政府科技报告 >Investigation of Diode Pumped Alkali Laser Atmospheric Transmission Using Tunable Diode Laser Absorption Spectroscopy.
【24h】

Investigation of Diode Pumped Alkali Laser Atmospheric Transmission Using Tunable Diode Laser Absorption Spectroscopy.

机译:用可调谐二极管激光吸收光谱研究二极管泵浦碱激光大气传输。

获取原文

摘要

A field deployable ruggedized tunable diode laser absorption spectroscopy (TDLAS) device fiber coupled to a pair of 12.5' Ritchey-Chretien telescopes was used to study atmospheric propagation for open path lengths of 100 to 1,000 meters to estimate atmospheric transmission at key High Energy Laser (HEL) wavelengths. The potassium (K) version of the Diode Pumped Alkali Laser (DPAL) operates in between two of the sharp oxygen rotational features in the PP and the PQ branches. The device can be used to observe rotational temperature, concentrations, and atmospheric pressure. Molecular oxygen absorption lines near the potassium, and water vapor absorption lines near the rubidium and cesium DPALs at wavelengths near 770 nm, 795 nm, and 895 nm, respectively, were investigated using the Line-by-Line Radiative Transfer Model (LBLRTM) with the High Energy Laser End-to-End Simulation (HELEEOS). A tunable diode laser absorption spectroscopy (TDLAS) device was used to anchor simulations to actual outdoor atmospheric open-path collections. The implications of different laser gain cell configurations in DPAL systems are discussed, including spectral lineshape and atmospheric transmittance and are compared to existing high power laser systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号