首页> 美国政府科技报告 >Dynamic Holographic-Electronic Speckle-Pattern Interferometry
【24h】

Dynamic Holographic-Electronic Speckle-Pattern Interferometry

机译:动态全息电子散斑干涉测量

获取原文

摘要

The development of a nondestructive, full-field, quantitative optical technique,and its feasibility to study dynamic deformations of opaque and diffusively reflecting solids under transient loads, are discussed. The technique involves recording a sequence of dynamically changing two-beam speckle interference patterns (also called holographic speckle patterns) of a rapidly deforming body which is doubly illuminated by a laser light source. The time sequence of speckle patterns is recorded by means of a high-speed camera on an ultra-sensitive 35-mm film. The developed negatives are then digitized by a CCD camera into an image processing system. An initial speckle pattern corresponding to the undeformed state of the object is taken as the reference, and subsequent speckle patterns are digitally subtracted (reconstructed)from it to produce time-varying fringe patterns corresponding to the relative deformation of the test object. In order to gain confidence that the technique can be used to record truly transient deformation, it is tested here on a vibrating plate at resonance, thereby obtaining the evolution of the fringe pattern during 1/2 cycle of deformation corresponding to 160 microseconds. (MM).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号