首页> 外军国防科技报告 >Non-Stokes drag coefficient in single-particle electrophoresis: New insights on a classical problem
【2h】

Non-Stokes drag coefficient in single-particle electrophoresis: New insights on a classical problem

机译:Non-stokes drag coefficient in single-particle electrophoresis: New insights on a classical problem

代理获取
代理获取并翻译 | 示例

摘要

We measured the intrinsic electrophoretic drag coefficient of a single charged particle by optically trapping the particle and applying an AC electric field, and found it to be markedly different from that of the Stokes drag. The drag coefficient, along with the measured electrical force, yield a mobility-zeta potential relation that agrees with the literature. By using the measured mobility as input, numerical calculations based on the Poisson–Nernst–Planck equations, coupled to the Navier–Stokes equation, reveal an intriguing microscopic electroosmotic flow near the particle surface, with a well-defined transition between an inner flow field and an outer flow field in the vicinity of electric double layer’s outer boundary. This distinctive interface delineates the surface that gives the correct drag coefficient and the effective electric charge. The consistency between experiments and theoretical predictions provides new insights into the classic electrophoresis problem, and can shed light on new applications of electrophoresis to investigate biological nanoparticles.

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号