首页> 外文期刊>Spectroscopy >Miniature Optical Spectrometers, Part III: Conventional and Laboratory Near-Infrared Spectrometers
【24h】

Miniature Optical Spectrometers, Part III: Conventional and Laboratory Near-Infrared Spectrometers

机译:微型光学光谱仪,第三部分:常规和实验室近红外光谱仪

获取原文
获取原文并翻译 | 示例
       

摘要

In Part I of this series, we examined recently developed miniature mid-infrared spectrometers (1). In Part II, we surveyed micro electro mechanical systems (MEMS), micro-opto-electro-mechanical systems (MOEMS), and some of the photonics technologies developed for optical communications (2). Here, in Part III, we summarize some of the conventional approaches to miniaturizing near-infrared (NIR) spectrometers, and in Part IV, we will bring these themes together and see how MOEMS and telecommunications photonics are poised to revolutionize NIR spectroscopy with a new generation of miniature instruments. In contrast to the mid-infrared, where Fourier transform (FT)-IR spectrometers are the standard, and the UV-vis, where silicon photodiode-array (PDA) and charge-coupled-device (CCD) spectrometers dominate, there are a plethora of different technologies employed in laboratory near-infrared (NIR) spectrometers (3-5). Stark and Luchter (6) quote a total of 60 manufacturers, and the survey by Workman and Burns (3) lists close to 100 different instruments. There are several reasons for this. First, Fourier-transform instruments do not dominate NIR spectroscopy because commercial scanning grating instruments have been highly optimized for low-resolution applications, and FT spectrometers lose their multiplex advantage in this region, as they are generally shot-noise limited. FT spectrometers do, however, retain their throughput advantage and laser-based wavelength scale referencing in the NIR. Second, both one- and two-dimensional photoconductor array detectors are available at reasonable costs, although they are expensive compared with the PDAs and CCDs used in the visible and UV regions. Finally, many other wavelength-selective devices are available, including liquid-crystal tunable filters (LCTFs) and acousto-optic tunable filters (AOTFs). Each of these approaches has their particular advantages and disadvantages.
机译:在本系列的第一部分中,我们检查了最近开发的微型中红外光谱仪(1)。在第二部分中,我们调查了微机电系统(MEMS),微光机电系统(MOEMS)以及为光通信而开发的一些光子技术(2)。在这里,我们在第三部分中总结了一些使近红外(NIR)光谱仪小型化的常规方法,在第四部分中,我们将这些主题放在一起,并了解MOEMS和电信光子技术将如何通过一种新的方式彻底改变NIR光谱学微型仪器的产生。与以傅立叶变换(FT)-IR光谱仪为标准的中红外光谱和以硅光电二极管阵列(PDA)和电荷耦合器件(CCD)光谱仪为主导的UV-vis相比,有一个实验室近红外(NIR)光谱仪采用了多种不同的技术(3-5)。 Stark和Luchter(6)总共引用了60家制造商,Workman和Burns(3)的调查列出了近100种不同的仪器。有几个原因。首先,傅立叶变换仪器不能控制近红外光谱,因为商用扫描光栅仪器已针对低分辨率应用进行了高度优化,而傅立叶变换光谱仪在该区域失去了多路复用的优势,因为它们通常受到散粒噪声的限制。但是,FT光谱仪确实保留了其吞吐量优势和NIR中基于激光的波长标度。其次,一维和二维光电导体阵列检测器都可以以合理的价格获得,尽管与可见光和紫外线区域中使用的PDA和CCD相比,它们价格昂贵。最后,还有许多其他的波长选择设备可用,包括液晶可调滤光片(LCTF)和声光可调滤光片(AOTF)。这些方法中的每一种都有其特定的优点和缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号