首页> 外文期刊>Statistics and Its Interface >A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models
【24h】

A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models

机译:关于线性回归模型中缺失估计的多重插补,最大似然和完全贝叶斯方法之间的关系的注释

获取原文
获取原文并翻译 | 示例

摘要

Multiple Imputation, Maximum Likelihood and Fully Bayesian methods are the three most commonly used model-based approaches in missing data problems. Although it is easy to show that when the responses are missing at random (MAR), the complete case analysis is unbiased and efficient, the aforementioned methods are still commonly used in practice for this setting. To examine the performance of and relationships between these three methods in this setting, we derive and investigate small sample and asymptotic expressions of the estimates and standard errors, and fully examine how these estimates are related for the three approaches in the linear regression model when the responses are MAR. We show that when the responses are MAR in the linear model, the estimates of the regression coefficients using these three methods are asymptotically equivalent to the complete case estimates under general conditions. One simulation and a real data set from a liver cancer clinical trial are given to compare the properties of these methods when the responses are MAR.
机译:多重插补,最大似然法和完全贝叶斯方法是丢失数据问题中最常用的三种基于模型的方法。尽管很容易表明,当随机丢失响应(MAR)时,完整的案例分析是无偏见且高效的,但上述方法仍在实践中普遍用于此设置。为了检验在这种情况下这三种方法的性能以及它们之间的关系,我们推导并研究了估计值和标准误差的小样本和渐近表达式,并在线性回归模型中充分检验了这些估计值与三种方法之间的关系。回应是MAR。我们表明,当线性模型中的响应为MAR时,使用这三种方法的回归系数的估计在一般条件下渐近等效于完整案例的估计。给出了一个肝癌临床试验的模拟和真实数据集,以比较当反应为MAR时这些方法的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号