首页> 外文期刊>IEEE Transactions on Circuits and Systems, II. Express briefs >An Optimization-Based Indoor#x2013;Outdoor Seamless Positioning Method Integrating GNSS RTK, PS, and VIO
【24h】

An Optimization-Based Indoor#x2013;Outdoor Seamless Positioning Method Integrating GNSS RTK, PS, and VIO

机译:一种基于优化的融合 GNSS RTK、PS 和 VIO 的室内外无缝定位方法

获取原文
获取原文并翻译 | 示例

摘要

The integration of global navigation satellite system (GNSS), vision, and inertial can perform positioning in indoor-outdoor transition scenarios. However, in indoor scenes, GNSS signals fail, and the global information of visual-inertial odometry (VIO) is not observable. In this brief, we propose an optimization-based seamless indoor-outdoor positioning method. Specifically, in the factor graph framework, we fuse GNSS, vision, inertial, and pressure sensor (PS) measurements to obtain accurate global positioning information in complex indoor-outdoor transition scenarios. In addition, we construct PS factors by using inertial measurement unit (IMU) forward-backward preintegration technology to eliminate the impact of time delay of PS measurements. Moreover, we incorporate GNSS and PS factors into the covisibility graph marginalization strategy of ORB-SLAM3. Furthermore, in the initialization process, we add the alignment of GNSS-inertial and PS-inertial. Real world experiments demonstrate that the proposed algorithm has better positioning accuracy and robustness than the state-of-the-art visual-inertial algorithms in complex indoor-outdoor scenes such as underground garages and multi-story buildings. To contribute to the community, we open-source the dataset on Github: https://github.com/SYSU-CPNTLab/GVI-SYSU-Outdoor-Indoor-Dataset .
机译:全球导航卫星系统 (GNSS)、视觉和惯性的集成可以在室内外过渡场景中执行定位。但是,在室内场景中,GNSS 信号会失效,并且无法观察到视觉惯性里程计 (VIO) 的全局信息。在本简报中,我们提出了一种基于优化的无缝室内外定位方法。具体来说,在因子图框架中,我们融合了 GNSS、视觉、惯性和压力传感器 (PS) 测量,以在复杂的室内外过渡场景中获得准确的全球定位信息。此外,我们利用惯性测量单元 (IMU) 前后预积分技术构建 PS 因子,以消除 PS 测量时延的影响。此外,我们将 GNSS 和 PS 因子纳入 ORB-SLAM3 的共可见性图边缘化策略。此外,在初始化过程中,我们添加了 GNSS 惯性和 PS 惯性的对齐。实际实验表明,在地下车库和多层建筑等复杂的室内外场景中,所提算法比最先进的视觉惯性算法具有更好的定位精度和鲁棒性。为了向社区做出贡献,我们在 Github 上开源了数据集:https://github.com/SYSU-CPNTLab/GVI-SYSU-Outdoor-Indoor-Dataset 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号