首页> 外文期刊>International journal of computational systems engineering >A corpus-based study on the characteristics of the use of spoken English chunks
【24h】

A corpus-based study on the characteristics of the use of spoken English chunks

机译:基于语料库的英语口语块使用特征研究

获取原文
获取原文并翻译 | 示例

摘要

This study constructs the English-speaking SELL corpus, proposes a CNN-LSTM-SA algorithm model-based English speaking recognition technique for the use of English-speaking blocks, and analyses the results of the SELL corpus and the speaking recognition model. The results show that the model's loss rate shows a trend of slow increase after a sharp decrease. When the number of iterations of the model is 300, the inflection points of the loss value and accuracy rate occur. At this point, the accuracy tends to converge, and its training accuracy is close to 88, which is significantly higher than other algorithms. The CNN-LSTM network performs the best under the ReLu and tanh functions selected for the study, and the MAE and RMSE indexes 26.54 and 36.11, respectively. The model performance is higher than other algorithms under all six complexities, and its difference is about 4 at the lowest, with a very stable performance advantage.
机译:本研究构建了英语SELL语料库,提出了一种基于CNN-LSTM-SA算法模型的英语口语识别技术,并分析了SELL语料库和口语识别模型的结果。结果表明:模型损失率呈现后急剧下降后缓慢上升的趋势;当模型的迭代次数为300次时,损失值和准确率的拐点出现。此时,准确率趋于收敛,其训练准确率接近88%,明显高于其他算法。CNN-LSTM网络在研究选择的ReLu和tanh函数下表现最好,MAE和RMSE指数分别为26.54和36.11。模型性能在所有六种复杂度下都高于其他算法,最低时相差约4%,具有非常稳定的性能优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号