首页> 外文期刊>Mathematical Biosciences: An International Journal >Switching from simple to complex dynamics in a predator-prey-parasite model: An interplay between infection rate and incubation delay
【24h】

Switching from simple to complex dynamics in a predator-prey-parasite model: An interplay between infection rate and incubation delay

机译:捕食者-猎物-寄生虫模型从简单动力学转变为复杂动力学:感染率与潜伏期之间的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

Parasites play a significant role in trophic interactions and can regulate both predator and prey populations. Mathematical models might be of great use in predicting different system dynamics because models have the potential to predict the system response due to different changes in system parameters. In this paper, we study a predator-prey-parasite (PPP) system where prey population is infected by some micro parasites and predator-prey interaction occurs following Leslie-Gower model with type II response function. Infection spreads following SI type epidemic model with standard incidence rate. The infection process is not instantaneous but mediated by a fixed incubation delay. We study the stability and instability of the endemic equilibrium point of the delay-induced PPP system with respect to two parameters, viz., the force of infection and the length of incubation delay under two cases: (i) the corresponding non delayed system is stable and (ii) the corresponding non-delayed system is unstable. In the first case, the system populations coexist in stable state for all values of delay if the force of infection is low; or show oscillatory behavior when the force of infection is intermediate and the length of delay crosses some critical value. The system, however, exhibits very complicated dynamics if the force of infection is high, where the system is unstable in absence of delay. In this last case, the system shows oscillatory, stable or chaotic behavior depending on the length of delay. (C) 2016 Elsevier Inc. All rights reserved.
机译:寄生虫在营养相互作用中起重要作用,可以调节捕食者和猎物的数量。数学模型可能在预测不同的系统动力学方面很有用,因为由于系统参数的不同变化,模型具有预测系统响应的潜力。在本文中,我们研究了捕食者-猎物-寄生虫(PPP)系统,其中捕食者种群受到某些微寄生物的感染,并且在具有II型响应功能的Leslie-Gower模型之后,捕食者-猎物相互作用发生。感染以标准发病率按照SI型流行病模型传播。感染过程不是瞬时的,而是由固定的孵育延迟介导的。我们针对两种情况研究了延迟诱发的PPP系统的地方平衡点的稳定性和不稳定性,即两个因素下的感染力和潜伏期长度:(i)相应的非延迟系统为(ii)相应的非延迟系统不稳定。在第一种情况下,如果感染力较低,则系统种群在所有延迟值上都处于稳定状态共存。或在感染力处于中等水平且延迟时间超过某个临界值时显示振荡行为。但是,如果感染力很高,则系统会表现出非常复杂的动态,而系统会在没有延迟的情况下变得不稳定。在后一种情况下,系统会根据延迟的长度显示出振荡,稳定或混乱的行为。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号