首页> 外文期刊>Medical Physics >Dynamically accumulated dose and 4D accumulated dose for moving tumors
【24h】

Dynamically accumulated dose and 4D accumulated dose for moving tumors

机译:动态累积剂量和4D累积剂量用于移动肿瘤

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a pulsed beam; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a continuous beam. A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to KN, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries andor total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries andor total deliver time was also established.
机译:目的:这项工作的目的是研究动态肿瘤剂量(动态剂量)与运动肿瘤照射的4D累积剂量(4D剂量)之间的关系,并量化由肿瘤运动引起的剂量不确定性。方法:作者确定,无论治疗方式和给药方式如何,多次给药后,动态剂量将收敛于4D剂量,而不是3D静态剂量。分别为4D和静态剂量确定了动态剂量或使用4D或静态剂量的最大估计误差的范围。进行了数值模拟(1)证明了以下原理:多次交付后,对于每个阶段,在任何给定时间的平均交付数量都收敛为阶段数(N)内的总分数(K); (2)研究4D和动态剂量之间的剂量差,该剂量差是脉冲束传输次数的函数; (3)研究4D剂量和动态剂量之间的剂量差,该剂量差是连续光束传输的传输时间的函数。建立了泊松模型以估计平均剂量误差与脉冲束和连续束的输送次数或输送时间的关系。结果:数值模拟证实,假设一个随机的起始阶段,每个阶段的传递数量收敛到KN。对脉冲束和连续束的模拟还表明,剂量误差是分娩次数和/或总分娩时间的强函数,并且可能是呼吸周期的函数,具体取决于分娩的方式。泊松模型与仿真非常吻合。结论:无论治疗方式如何,多次分娩后动态累积剂量将收敛至4D累积剂量。可以使用衍生自4D剂量的量来确定动态剂量的界限,并且还确定了动态剂量和4D剂量之间的平均剂量差随输送次数和/或总输送时间的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号