首页> 外文期刊>Mathematics of Control, Signals, and Systems: MCSS >On certain hyperelliptic signals that are natural controls for nonholonomic motion planning
【24h】

On certain hyperelliptic signals that are natural controls for nonholonomic motion planning

机译:在某些超椭圆形信号上,这些信号是非完整运动计划的自然控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the general problem of approximating, in a certain optimal way, non-admissible motions of a kinematic system with nonholonomic constraints. Since this kind of problems falls into the general subriemannian geometric setting, it is natural to consider optimality in the sense of approximating by means of subriemannian geodesics. We consider systems modeled by a subriemannian Goursat structure, a particular case being the well-known system of a car with trailers, along with the associated parallel parking problem. Several authors approximate the successive Lie brackets using trigonometric functions. By contrast, we show that more natural optimal motions are related with closed hyperelliptic plane curves with a certain number of loops.
机译:在本文中,我们解决了以某种最优方式近似具有非完整约束的运动系统的不允许运动的一般问题。由于这类问题属于一般的Subriemannian几何设置,因此自然而然地考虑采用Subriemannian测地线近似的最优性。我们考虑采用Subriemannian Goursat结构建模的系统,一种特殊情况是众所周知的带有拖车的汽车系统,以及相关的并行停车问题。几位作者使用三角函数近似了连续的李括号。相比之下,我们表明,更自然的最优运动与具有一定数量的回路的闭合超椭圆平面曲线有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号