首页> 外文期刊>Global change biology >Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe.
【24h】

Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe.

机译:从植物群落推断的局部温度表明整个北欧气候变暖的强烈空间缓冲作用。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 60-65 degrees N and increased with terrain roughness, averaging 1.97 degrees C (SD=0.84 degrees C) and 2.68 degrees C (SD=1.26 degrees C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32 degrees C km-1) than spatial turnover in growing-season GiT (0.18 degrees C km-1). We conclude that thermal variability within 1-km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.Digital Object Identifier http://dx.doi.org/10.1111/gcb.12129
机译:最近在较小空间范围(<2500 km 2 )山区的研究表明,几十米或几百米的细粒度热变异性超过了未来几十年气候变暖的大部分预期。温度的这种可变性提供缓冲以减轻气候变化的影响。这种局部空间缓冲是否仅限于地形复杂的地形?为了回答这个问题,我们在这里研究了北欧2500公里宽的纬度梯度上的细粒度热变率,其中包括各种各样的地形复杂性。我们首先在模型框架中结合植物群落数据,Ellenberg温度指标值,本地测量温度(LmT)和全局内插温度(GiT),以从<1000-m 2 单位(社区推断的温度:CiT)。然后我们评估:(1)1 km 2 单位内的CiT范围(热变异性); (2)在1 km分辨率下,CiT范围与地形和地理预测指标之间的关系; (3)在100 km 2 单位内,CiT的空间周转率是否大于GiT的空间周转率。在生长季节(6月,7月,8月),Ellenberg温度指示剂值与植物组合相结合说明了LmT变化的46-72%和GiT变化的92-96%。在1-km 2 单位内,季节变化的CiT范围在北纬60-65度达到峰值,并随地形粗糙度的增加而增加,平均为1.97摄氏度(SD = 0.84摄氏度)和2.68摄氏度(SD = 1.26摄氏度)摄氏度)。地形相关变量和纬度之间的复杂相互作用解释了当考虑采样工作和剩余空间自相关时,生长季节CiT范围变化的35%。 100 km 2 单位以内的生长季节CiT的空间周转量平均为生长季节的空间周转量的0.3摄氏度C km -1 1.8倍GiT(0.18摄氏度km -1 )。我们得出的结论是,即使在最平坦的地形中,1 km 2 单位内1 km 2 单位内的热变化也大大增加了未来北欧气候变暖的局部空间缓冲。 10.1111 / gcb.12129

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号