首页> 外文期刊>Inverse Problems in Science & Engineering >Near real-time atmospheric contamination source identification by an optimization-based inverse method
【24h】

Near real-time atmospheric contamination source identification by an optimization-based inverse method

机译:基于优化的逆方法近实时大气污染源识别

获取原文
获取原文并翻译 | 示例
           

摘要

In this article, we propose a method to identify contamination events (location and time of release) by enhancing a mathematical method originally proposed by Carasso et al, (Carasso, A., Sanderson, J. G and Hyman, J.M., 1978, Digital removal of random media image degradation by solving the diffusion equation backward in time. SIAM Journal of Numerical Analysis, 15(4)), The method of the Marching-Jury Backward Beam/Plate Equation, applied earlier to groundwater problems, is enhanced and coupled to discrete Fourier transform processing techniques to solve a two-dimensional (2D) advection-dispersion transport problem with homogeneous and isotropic parameters backwards in time. (Atmadja, J. and Bagtzoglou, A.C., 2001a, Pollution source identification in heterogeneous porous media. Water Resources Research, 37(8), 2113-2125; Bagtzoglou, A.C. and Atmadja, J., 2003. The marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: application to contaminant plume spatial distribution recovery. Water Resources Research, 39(2), 1038. Cornacchiulo, D. and Bagtzoglou, A.C., 2002, The marching-jury backward plate equation for contaminant plume spatial distribution recovery in two-dimensional heterogeneous media: Computational Issues, In: S.M.. Hassanizadeh, R.J. Schotting, W.G. Gray and G.F. Finder (Eds.) Computational Methods for Subsurface Flow and Transport (Netherlands: Elsevier Publishers) pp. 461-468. The difficulties associated with this ill-posed, inverse problem are well-recognized (Atmadja, J. and Bagtzoglou, A.C., 2001b, State-of-the-art report on mathematical methods for groundwater pollution source identification. Environmental Forensics, 2(3), 205-214). We, therefore, enhance the method by integrating an optimization scheme that takes as input parameters the stabilization parameter, the transport velocities, and the coefficient of diffusion. The objective function is set as an equally weighted sum of different mass and peak errors that can be calculated based on a combination of exhaustive contaminant coverage at specific points in time (e.g., lidar) and/or point data collected at a continuously monitored network of chemical sensors or biosensors, which may be stationary or mobile.
机译:在本文中,我们提出了一种通过增强最初由Carasso等人(Carasso,A.,Sanderson,J. G和Hyman,JM,1978,Digital)提出的数学方法来识别污染事件(位置和释放时间)的方法。通过及时求解扩散方程来消除随机介质图像退化。SIAM数值分析杂志,15(4)),增强和耦合了将Marching-Jury后向梁/板方程的方法应用于地下水问题的早期方法离散傅立叶变换处理技术来解决二维(2D)对流扩散输运问题,其中均质和各向同性参数会向后倒退。 (Atmadja,J。和Bagtzoglou,AC,2001a,非均质多孔介质中的污染源识别。WatersourceResearch,37(8),2113-2125; Bagtzoglou,AC和Atmadja,J.,2003。水文反演方程和准可逆性方法:在污染物羽流空间分布恢复中的应用。水利研究,39(2),1038. Cornacchiulo,D.和Bagtzoglou,AC,2002,污染物羽流的行进-评审团后向板方程二维异质介质中的空间分布恢复:计算问题,见:SM。Hassanizadeh,RJ Schotting,WG Gray和GF Finder(编辑)地下流动和运输的计算方法(荷兰:Elsevier Publishers),第461-468页。与这个不适的反问题相关的困难已得到充分认识(Atmadja,J.和Bagtzoglou,AC,2001b,有关地下水污染源识别数学方法的最新报告。心理取证,2(3),205-214)。因此,我们通过集成一个优化方案来增强该方法,该优化方案将稳定参数,传输速度和扩散系数作为输入参数。目标函数设置为不同质量和峰误差的均等加权和,可以根据特定时间点(例如,激光雷达)的详尽污染物覆盖率和/或在连续监测网络中收集的点数据的组合来计算目标函数化学传感器或生物传感器,可以是固定的也可以是移动的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号