首页> 外文期刊>Ecological Modelling >A process-based model of nitrogen cycling in forest plantations Part I. Structure, calibration and analysis of the decomposition model
【24h】

A process-based model of nitrogen cycling in forest plantations Part I. Structure, calibration and analysis of the decomposition model

机译:基于过程的人工林氮循环模型第一部分:分解模型的结构,校准和分析

获取原文
获取原文并翻译 | 示例
           

摘要

We present a new decomposition model of C and N cycling in forest ecosystems that simulates N mineralisation from decomposing tree litter. It incorporates a mechanistic representation of the role of soil organisms in the N mineralisation-immobilisation turnover process during decomposition. We first calibrate the model using data from decomposition of C-14-labelled cellulose and lignin and 14 C-labelled legume material and then calibrate and test it using mass loss and N loss data from decomposing Eucalyptus globulus residues. The model has been linked to the plant production submodel of the G'DAY ecosystem model, which previously used the CENTURY decomposition submodel for simulating C and N cycling. The key differences between this new decomposition model and the previous one, based on the CENTURY model, are: (1) growth of microbial biomass is the process that drives N mineralisation-immobilisation, and microbial succession is simulated; (2) decomposition of litter can be N-limited, depending on soil inorganic N availability relative to N requirements for microbial growth; (3) 'quality' of leaf and fine root litter is expressed in terms of biochemically measurable fractions; (4) the N:C ratio of microbial biomass active in decomposing litter is a function of litter quality and N availability; and (5) the N:C ratios of soil organic matter (SOM) pools are not prescribed but are instead simulated output variables defined by litter characteristics and soil inorganic N availability. With these modifications the model is able to provide reasonable estimates of both mass loss and N loss by decomposing E. globulus leaf and branch harvest residues in litterbag experiments. A sensitivity analysis of the decomposition model to selected parameters indicates that parameters regulating the stabilisation of organic C and N, as well as those describing incorporation of soil inorganic N in Young-SOM (biochemical immobilisation of N) are particularly critical for long-term applications of the model. A parameter identifiability analysis demonstrates that simulated short-term C and N loss from decomposing litter is highly sensitive to three model parameters that are identifiable from the E. globulus litterbag data. (c) 2005 Elsevier B.V. All rights reserved.
机译:我们提出了森林生态系统中碳和氮循环的新分解模型,该模型模拟了分解树木凋落物中的氮矿化作用。它结合了在分解过程中土壤生物在氮矿化固定化过程中的作用的机械表示。我们首先使用来自C-14标记的纤维素和木质素以及14 C标记的豆类物质分解的数据来校准模型,然后使用分解桉树残渣的质量损失和N损失数据进行校准和测试。该模型已与G'DAY生态系统模型的植物生产子模型链接,该模型先前使用CENTURY分解子模型来模拟C和N循环。这种新的分解模型与基于CENTURY模型的分解模型之间的主要区别在于:(1)微生物生物量的生长是驱动氮矿化固定的过程,并且模拟了微生物演替; (2)凋落物的分解可以是有限氮的,这取决于土壤无机氮的有效性(相对于微生物生长所需的氮); (3)叶片和细根凋落物的“质量”以生化可测量的分数表示; (4)分解垃圾中活性微生物生物量的氮碳比是垃圾质量和氮素利用率的函数; (5)没有规定土壤有机质(SOM)池的N:C比,而是模拟的由垫料特性和土壤无机氮有效性定义的输出变量。通过这些修改,该模型能够通过分解垃圾袋实验中的小球藻叶和枝条收获残渣来提供质量损失和氮损失的合理估计。分解模型对所选参数的敏感性分析表明,调节有机碳和氮稳定的参数以及描述将土壤无机氮掺入Young-SOM(氮的生化固定化)的参数对于长期应用尤为重要模型的参数可识别性分析表明,模拟的分解凋落物造成的短期C和N损失对可从球。垃圾袋数据识别出的三个模型参数高度敏感。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号