...
首页> 外文期刊>Ecological Modelling >Adding complex trophic interactions to a size-spectral plankton model: Emergent diversity patterns and limits on predictability
【24h】

Adding complex trophic interactions to a size-spectral plankton model: Emergent diversity patterns and limits on predictability

机译:在大小光谱浮游生物模型中添加复杂的营养相互作用:新兴的多样性模式和可预测性限制

获取原文
获取原文并翻译 | 示例
           

摘要

A new model in the NPZ (nutrient-phytoplankton-zooplankton) style is presented, mechanistically simple but with 40 size classes each of phytoplankton (1-20 μm) and small zooplankton (2.1-460 μm), in order to resolve one level of trophic interactions in detail. General, empirical allometric relationships are used to parameterize both the optimal prey size and size selectivity for each grazer class, as is rarely done. This inclusion of complex predator-prey linkages and realistic prey preferences yields a system with an emergent pattern of phytoplankton diversity consistent with global ocean observations, i.e., a parabolic relationship between diversity (as measured by the Shannon evenness) and biomass. It also yields significant long-term time evolution, which places limits on the extent to which the community response to nutrient forcing can be predicted from forcing in a pragmatic sense. When a simple annual cycle in nutrient supply is repeated exactly for many years, transient fluctuations up to a factor of two in spring bloom magnitude persist for 10-20 years before a stable seasonal biomass cycle is achieved. When the amplitude of the nutrient-supply annual cycle is given a random interannual modulation, these long-lived transients add significant noise to a 100-year correlation between annual-mean nutrient supply and annual-mean biomass. This noise is 20% of total interannual variance in the model base case, and ranges from 0% to 40% depending on the grazer size selectivity. In general, unpredictability on the bloom timescale is damped when food-web complexity is increased by making grazers less selective, while unpredictability on the interannual scale shows the opposite pattern, increasing with increasing food-web complexity up to a high threshhold, past which community structure and biomass time evolution both suddenly simplify. These results suggests a new strategy for ensemble ecosystem forecasting and uncertainty estimation, analogous to methods common in circulation and climate modeling, in which internal variability (predator-prey interactions in the biological case; eddies and climate-system oscillations in the physical case) are resolved and quantified, rather than suppressed.
机译:提出了一种新的NPZ(营养-浮游植物-浮游动物)样式的模型,该模型机械简单,但浮游植物(1-20μm)和小型浮游动物(2.1-460μm)各有40个大小类别,以解决一个水平的浮游生物。营养相互作用的细节。通常,经验异形关系用于为每个放牧者类别参数化最佳猎物大小和大小选择性,这很少这样做。复杂的捕食者与猎物的联系以及现实中的猎物偏好的结合产生了一种浮游植物多样性的新兴模式,与全球海洋观测相符,即多样性(通过香农均匀度衡量)与生物量之间存在抛物线关系。它还会产生大量的长期时间演变,这限制了从务实意义上的强迫可以预测社区对营养强迫的响应的程度。如果精确地重复简单的年度养分循环多年,在达到稳定的季节性生物量循环之前,春季绽放量的两倍波动持续10-20年。当对养分供应年周期的幅度进行随机的年际调节时,这些长期存在的瞬变会给年均养分供应量和年均生物量之间的100年相关性增加明显的噪声。在模型基本情况下,此噪声为年度总变化的20%,具体取决于放牧者的尺寸选择性,其范围为0%至40%。通常,当通过减少放牧者的选择来增加食物网的复杂性时,开花时间尺度上的不可预测性会受到抑制,而在年际尺度上的不可预测性则呈现相反的模式,随着食物网复杂性的增加,直至阈值较高,超过该社区结构和生物量时间演变都突然简化。这些结果提出了一种整体生态系统预测和不确定性估计的新策略,类似于循环和气候建模中常用的方法,其中内部可变性(生物案例中的捕食者与猎物相互作用;物理案例中的涡流和气候系统振荡)解决和量化,而不是压制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号