首页> 外文期刊>Ecological Modelling >Using social network analysis tools in ecology: Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay
【24h】

Using social network analysis tools in ecology: Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay

机译:在生态学中使用社交网络分析工具:将马尔可夫过程转换模型应用于切萨皮克湾的季节性营养网络动态

获取原文
获取原文并翻译 | 示例
           

摘要

Ecosystem components interact in complex ways and change over time due to a variety of both internal and external influences (climate change, season cycles, human impacts). Such processes need to be modeled dynamically using appropriate statistical methods for assessing change in network structure. Here we use visualizations and statistical models of network dynamics to understand seasonal changes in the trophic network model described by Baird and Ulanowicz [Baird, D., Ulanowicz, R.E., 1989. Seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 501 (59), 329-364] for the Chesapeake Bay (USA). Visualizations of carbon flow networks were created for each season by using a network graphic analysis tool (NETDRAW). The structural relations of the pelagic and benthic compartments (nodes) in each seasonal network were displayed in a two-dimensional space using spring-embedder analyses with nodes color-coded for habitat associations (benthic or pelagic). The most complex network was summer, when pelagic species such as sea nettles, larval fishes, and carnivorous fishes immigrate into Chesapeake Bay and consume prey largely from the plankton and to some extent the benthos. Winter was the simplest of the seasonal networks, and exhibited the highest ascendency, with fewest nodes present and with most of the flows shifting to the benthic bacteria and sediment POC compartments. This shift in system complexity corresponds with a shift from a pelagic- to benthic-dominated system over the seasonal cycle, suggesting that winter is a mostly closed system, relying on internal cycling rather than external input. Network visualization tools are useful in assessing temporal and spatial changes in food web networks, which can be explored for patterns that can be tested using statistical approaches. A simulation-based continuous-time Markov Chain model called SIENA was used to determine the dynamic structural changes in the trophic network across phases of the annual cycle in a statistical as opposed to a visual assessment. There was a significant decrease in outdegree (prey nodes with reduced link density) and an increase in the number of transitive triples (a triad in which i chooses j and h, and j also chooses h, mostly connected via the non-living detritus nodes in position i), suggesting the Chesapeake Bay is a simpler, but structurally more efficient, ecosystem in the winter than in the summer. As in the visual analysis, this shift in system complexity corresponds with a shift from a pelagic to a more benthic-dominated system from summer to winter. Both the SIENA model and the visualization in NETDRAW support the conclusions of Baird and Ulanowicz [Baird, D., Ulanowicz, R.E., 1989. Seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 501 (59),329-364] that there was an increase in the Chesapeake Bay ecosystem's ascendancy in the winter. We explain such reduced complexity in winter as a system response to lowered temperature and decreased solar energy input, which causes a decline in the production of new carbon, forcing nodes to go extinct; this causes a change in the structure of the system, making it simpler and more efficient than in summer. It appears that the seasonal dynamics of the trophic structure of Chesapeake Bay can be modeled effectively using the SIENA statistical model for network change.
机译:生态系统各组成部分以复杂的方式相互作用,并由于各种内部和外部影响(气候变化,季节周期,人类影响)而随时间变化。需要使用适当的统计方法对这些过程进行动态建模,以评估网络结构的变化。在这里,我们使用网络动力学的可视化方法和统计模型来了解Baird和Ulanowicz [Baird,D.,Ulanowicz,R.E.,1989年。切萨皮克湾生态系统的季节动力学。 Ecol。 Monogr。 501(59),329-364],切萨皮克湾(美国)。使用网络图形分析工具(NETDRAW)为每个季节创建了碳流量网络的可视化。使用春季嵌入式分析在二维空间中显示每个季节网络中上层和底栖隔室(节点)的结构关系,并用颜色编码栖息地的关联(底栖或中上层)。最复杂的网络是夏天,当时海象,幼虫鱼和肉食性鱼类等远洋物种迁入切萨皮克湾,主要从浮游生物和某种程度上从底栖生物中捕食。冬季是季节网络中最简单的一个,并且具有最高的上升性,节点最少,大部分流量转移到底栖细菌和沉积物POC隔室。系统复杂性的这种变化与整个季节周期中由上层海域向底层海域为主的系统的转变相对应,这表明冬季是一个大部分封闭的系统,依赖于内部循环而不是外部输入。网络可视化工具可用于评估食物网络中的时间和空间变化,可以探索可使用统计方法测试的模式。使用基于模拟的连续时间马尔可夫链模型(称为SIENA)来确定统计数据中与视觉评估相对的整个年度周期各阶段营养网络的动态结构变化。外向度显着降低(链接密度降低的猎物节点),传递三元组的数量增加(三元组,其中我选择j和h,j也选择h,主要通过非生命碎屑节点连接在位置i)中,表明切萨皮克湾在冬天比夏天更简单,但结构上更有效。正如在视觉分析中一样,系统复杂性的这种变化对应于从夏季到冬季从中上层系统向以底栖为主的系统的转变。 SIENA模型和NETDRAW中的可视化都支持Baird和Ulanowicz的结论[Baird,D.,Ulanowicz,R.E.,1989。切萨皮克湾生态系统的季节性动态。 Ecol。 Monogr。 501(59),329-364],切萨皮克湾生态系统在冬季的上升趋势有所增加。我们解释说,冬季这种降低的复杂性是因为系统对温度降低和太阳能输入减少作出了响应,这导致新碳产量下降,迫使节点灭绝。这会导致系统结构发生变化,从而使其比夏季更简单,更高效。似乎可以使用SIENA统计模型对网络变化有效地模拟切萨皮克湾营养结构的季节动态。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号