...
首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites
【24h】

Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites

机译:Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites

获取原文
获取原文并翻译 | 示例

摘要

Multiwalled carbon nanotubes were used as filler to furan resin in the aim of producing an electrically conducting polymer composite that may be useful for electrode applications. The orientation of the nanotubes is controlled to prepare a composite with fillers unidi-rectionally oriented, which may result in higher electrical conductivity at one direction and at lower nanotube loading. Using the doctor blade technique, composite films were prepared and the alignment and its effect on the electrical conductivity of the composite were investigated. It was found that the doctor blade technique induced preferential alignment of the nanotubes in composite and a higher degree of alignment is achieved in composites with lower contents of nanotubes. Also, for low contents of nanotubes, the electrical conductivity of the composite with preferentially aligned nanotubes was up to a million times higher in the direction of alignment compared to that of the composite with randomly oriented nanotubes; however, at higher contents of nanotubes, this effect was diminished. The preferential alignment of the nanotubes also caused anisotropic electrical conductivity. The alignment and distribution is thought to create more junctions between nanotubes that resulted into the formation of more conducting channels in the polymer matrix parallel to blading direction.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号