...
首页> 外文期刊>Journal of Structural Engineering >Concrete-steel composite coupling beams. II: Subassembly testing and design verification
【24h】

Concrete-steel composite coupling beams. II: Subassembly testing and design verification

机译:Concrete-steel composite coupling beams. II: Subassembly testing and design verification

获取原文
获取原文并翻译 | 示例

摘要

As shown in a companion paper, the embedment length of steel-concrete composite coupling beams inside wall piers should be computed by incorporating the contribution of the encasement. In lieu of detailed fiber-based analytical techniques, a simple design-oriented model was developed and verified through testing of additional specimens with more realistic loading and boundary conditions. Moreover, the influence of face-bearing plates and floor slab was examined. The developed design method results in longer embedment length, and significantly enhanced energy-dissipating characteristics, strength, stiffness, and ductility. Additional improvements are possible by using face-bearings plates. The contribution of floor slab toward stiffness of the coupling beam is lost at small deformations and may be ignored. Slab participation toward the strength of the steel-concrete composite coupling beams is different from that anticipated for conventionally reinforced concrete beams because of the amount of equivalent reinforcement provided by the flanges of the steel coupling beam. References: 10

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号