首页> 外文期刊>Medical Physics >Anatomically and physiologically informed computational model of hepatic contrast perfusion for virtual imaging trials
【24h】

Anatomically and physiologically informed computational model of hepatic contrast perfusion for virtual imaging trials

机译:用于虚拟成像试验的肝脏造影剂灌注的解剖学和生理学信息计算模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract Purpose Virtual (in silico) imaging trials (VITs), involving computerized phantoms and models of the imaging process, provide a modern alternative to clinical imaging trials. VITs are faster, safer, and enable otherwise‐impossible investigations. Current phantoms used in VITs are limited in their ability to model functional behavior such as contrast perfusion which is an important determinant of dose and image quality in CT imaging. In our prior work with the XCAT computational phantoms, we determined and modeled inter‐organ (organ to organ) intravenous contrast concentration as a function of time from injection. However, intra‐organ concentration, heterogeneous distribution within a given organ, was not pursued. We extend our methods in this work to model intra‐organ concentration within the XCAT phantom with a specific focus on the liver. Methods Intra‐organ contrast perfusion depends on the organ's vessel network. We modeled the intricate vascular structures of the liver, informed by empirical and theoretical observations of anatomy and physiology. The developed vessel generation algorithm modeled a dual‐input‐single‐output vascular network as a series of bifurcating surfaces to optimally deliver flow within the bounding surface of a given XCAT liver. Using this network, contrast perfusion was simulated within voxelized versions of the phantom by using knowledge of the blood velocities in each vascular structure, vessel diameters and length, and the time since the contrast entered the hepatic artery. The utility of the enhanced phantom was demonstrated through a simulation study with the phantom voxelized prior to CT simulation with the relevant liver vasculature prepared to represent blood and iodinated contrast media. The spatial extent of the blood–contrast mixture was compared to clinical data. Results The vascular structures of the liver were generated with size and orientation which resulted in minimal energy expenditure required to maintain blood flow. Intravenous contrast was simulated as having known concentration and known total volume in the liver as calibrated from time–concentration curves. Measurements of simulated CT ROIs were found to agree with clinically observed values of early arterial phase contrast enhancement of the parenchyma (~5$ sim 5$ HU). Similarly, early enhancement in the hepatic artery was found to agree with average clinical enhancement (180$(180$ HU). Conclusions The computational methods presented here furthered the development of the XCAT phantoms allowing for multi‐timepoint contrast perfusion simulations, enabling more anthropomorphic virtual clinical trials intended for optimization of current clinical imaging technologies and applications.
机译:摘要 目的 虚拟(计算机模拟)成像试验 (VIT) 涉及计算机模型和成像过程模型,为临床成像试验提供了一种现代替代方案。VIT 更快、更安全,并且可以进行原本不可能的调查。目前用于 VIT 的模型在模拟功能行为的能力方面受到限制,例如造影剂灌注,这是 CT 成像中剂量和图像质量的重要决定因素。在我们之前对XCAT计算模型的研究中,我们确定并模拟了器官间(器官到器官)静脉注射造影剂浓度作为注射时间的函数。然而,没有追求器官内浓度,即给定器官内的异质分布。我们在这项工作中扩展了我们的方法,以模拟XCAT模型内的器官内浓度,并特别关注肝脏。方法 器官内造影剂灌注取决于器官的血管网络。我们根据解剖学和生理学的经验和理论观察,对肝脏复杂的血管结构进行了建模。开发的血管生成算法将双输入单输出血管网络建模为一系列分叉表面,以在给定 XCAT 肝脏的边界表面内以最佳方式提供血流。使用该网络,利用每个血管结构中的血速、血管直径和长度以及造影剂进入肝动脉以来的时间,在体素化版本的模型中模拟造影剂灌注。通过在 CT 模拟之前对体素进行模拟研究,并使用准备代表血液和碘造影剂的相关肝血管系统,证明了增强型模型的实用性。将造影剂混合物的空间范围与临床数据进行比较。结果 肝脏的血管结构具有大小和方向,导致维持血流所需的能量消耗最小。静脉注射造影剂被模拟为具有已知浓度和已知的肝脏总体积,根据时间-浓度曲线进行校准。发现模拟CT ROI的测量结果与临床观察到的实质早期动脉相差增强值一致(~5$ sim 5$ 胡)。同样,发现肝动脉的早期增强与平均临床增强(180$(180$ 胡)一致。结论 这里介绍的计算方法进一步推动了XCAT模型的发展,允许多时间点对比灌注模拟,从而实现更多拟人化的虚拟临床试验,旨在优化当前的临床成像技术和应用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号