首页> 外文期刊>Composite structures >Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: A machine learning approach
【24h】

Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: A machine learning approach

机译:聚合碳纳米管复合材料热导率的随机全范围多尺度建模:一种机器学习方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Based on a stochastic full-range multiscale model, we propose a data-driven approach to predict the thermal conductivity of CNT reinforced polymeric nano-composites (PNCs). Uncertain input parameters at different scales are propagated from nano-to macro-scale within a bottom-up multi-scale framework. Atomistic models are employed at the nano-scale while continuum mechanics approaches are used at the micro-, meso-and macro-scale. Representative volume elements in the context of finite element modeling (RVE-FEM) are used to finally obtain the homogenized thermal conductivity. To connect the micro and mesoscale and simplify the computation, we take advantage of the equivalent fiber theory. The input parameters are selected by a top-down scanning method and subsequently are converted as uncertain inputs. The length of single-walled carbon nanotube (SWCNT), the chirality of SWCNT, the thermal conductivity of the fibers, the thermal conductivity of the matrix, the Kapitza resistance, aspect ratio, agglomeration index, dispersion index and volume fraction are assumed as random-parameters. The Regression-tree-based (Random Forest and Gradient Boosting Machine) and Neural networks-based (Artificial neural networks and Deep neural networks) approaches are exploited for computational efficiency, where Particle Swarm Optimization (PSO) and 10-fold Cross Validation (CV) are employed for hyper-parameter tuning. Our machine learning prediction results agree well with published experimental data, which can provide a versatile and efficient method to design new PNCs.
机译:基于随机全范围多尺度模型,我们提出了一种数据驱动的方法来预测CNT增强聚合物纳米复合材料(PNCs)的热导率。在自下而上的多尺度框架内,不同尺度的不确定输入参数从纳米尺度传播到宏观尺度。原子模型用于纳米尺度,而连续介质力学方法用于微观、中观和宏观尺度。在有限元建模(RVE-FEM)的背景下,使用代表性的体积单元最终获得均匀的热导率。为了连接微尺度和中尺度并简化计算,我们利用了等效纤维理论。输入参数通过自上而下的扫描方法进行选择,然后转换为不确定的输入。将单壁碳纳米管(SWCNT)的长度、SWCNT的手性、纤维的热导率、基体的热导率、Kapitza电阻、长径比、团聚指数、色散指数和体积分数作为随机参数。利用基于回归树(随机森林和梯度提升机)和基于神经网络(人工神经网络和深度神经网络)的方法提高计算效率,其中粒子群优化(PSO)和10倍交叉验证(CV)用于超参数调优。我们的机器学习预测结果与已发表的实验数据吻合较好,可以为设计新的PNC提供一种通用且有效的方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号